1 Mutilar

Vicariance Biogeography A Critique Essay

1. Stock JH. Some remarkable distribution patterns in stygobiont Amphipoda. J. Nat. Hist. 1993;27:807–819. doi: 10.1080/00222939300770491.[Cross Ref]

2. Holsinger JR. Pattern and process in the biogeography of subterranean amphipods. Hydrobiologia. 1994;287:131–145. doi: 10.1007/BF00006902.[Cross Ref]

3. Notenboom, J. Marine regressions and the evolution of groundwater dwelling amphipods (Crustacea). J. Biogeogr. 437–454 (1991).

4. Wagner, H. P. A monographic review of the Thermosbaenacea (Crustacea: Peracarida) A study on their morphology, taxonomy, phylogeny and biogeography. Zoologische Verhandelingen 291, (1994).

5. Heads M. Dating nodes on molecular phylogenies: a critique of molecular biogeography. Cladistics. 2005;21:62–78. doi: 10.1111/j.1096-0031.2005.00052.x.[Cross Ref]

6. Upchurch P. Gondwanan break-up: legacies of a lost world? Trends Ecol. Evol. 2008;23:229–236. doi: 10.1016/j.tree.2007.11.006.[PubMed][Cross Ref]

7. Croizat, L. Panbiogeography. (Published by the author, 1958).

8. Croizat, L. Space, time, form: the biological synthesis. (Published by the author, 1964).

9. Waters JM, et al. Biogeography off the tracks. Syst. Biol. 2013;62:494–8. doi: 10.1093/sysbio/syt013.[PubMed][Cross Ref]

10. Nelson, G. & Rosen, D. E. Vicariance biogeography: a critique: symposium of the Systematics Discussion Group of the American Museum of Natural History. (Columbia University Press, 1981).

11. De Queiroz A. The resurrection of oceanic dispersal in historical biogeography. Trends in Ecology and Evolution. 2005;20:68–73. doi: 10.1016/j.tree.2004.11.006.[PubMed][Cross Ref]

12. Page, T. J. et al. Allegory of a cave crustacean: systematic and biogeographic reality of Halosbaena (Peracarida: Thermosbaenacea) sought with molecular data at multiple scales. Mar. Biodivers. 1–18, doi:10.1007/s12526-016-0565-3 (2016).

13. Havird JC, Vaught RC, Weese DA, Santos SR. Reproduction and development in Halocaridina rubra Holthuis, 1963 (Crustacea: Atyidae) clarifies larval ecology in the Hawaiian anchialine ecosystem. Biol. Bull. 2015;229:134–142. doi: 10.1086/BBLv229n2p134.[PubMed][Cross Ref]

14. Sanz S, Platvoet D. New perspectives on the evolution of the genus Typhlatya (Crustacea) Contrib. to Zool. 1995;65:79–99.

15. Botello A, et al. Historical biogeography and phylogeny of Typhlatya cave shrimps (Decapoda: Atyidae) based on mitochondrial and nuclear data. J. Biogeogr. 2013;40:594–607. doi: 10.1111/jbi.12020.[Cross Ref]

16. Bănărescu, P. Zoogeography of fresh waters. Vol. 1. General Distribution and Dispersal of Freshwater Animals. (Aula-Verlag, 1990).

17. Fernández-Palacios JM, et al. A reconstruction of Palaeo-Macaronesia, with particular reference to the long-term biogeography of the Atlantic island laurel forests. J. Biogeogr. 2011;38:226–246. doi: 10.1111/j.1365-2699.2010.02427.x.[Cross Ref]

18. Bauzà-Ribot MM, et al. Mitogenomic phylogenetic analysis supports continental-scale vicariance in subterranean thalassoid crustaceans. Curr. Biol. 2012;22:2069–74. doi: 10.1016/j.cub.2012.09.012.[PubMed][Cross Ref]

19. Bauzà-Ribot MM, et al. Reply to Phillips et al. Current Biology. 2013;23:R605–R606. doi: 10.1016/j.cub.2013.04.017.[PubMed][Cross Ref]

20. Chakrabarty P, Davis MP, Sparks JS. The first record of a trans-oceanic sister-group relationship between obligate vertebrate troglobites. PLoS One. 2012;7:e44083. doi: 10.1371/journal.pone.0044083.[PMC free article][PubMed][Cross Ref]

21. Phillips MJ, et al. The linking of plate tectonics and evolutionary divergence. Curr. Biol. 2013;23:R603–R605. doi: 10.1016/j.cub.2013.06.001.[PubMed][Cross Ref]

22. De Bruyn M, et al. Time and space in biogeography: Response to Parenti & Ebach (2013) Journal of Biogeography. 2013;40:2204–2206. doi: 10.1111/jbi.12166.[Cross Ref]

23. Hunte, W. The complete larval development of the freshwater shrimp Atya innocous (Herbst) reared in the laboratory (Decapoda, Atyidae). Crustac. Suppl. 231–242 (1979).

24. Humphreys WF. Physico-chemical profile and energy fixation in Bundera Sinkhole, an anchialine remiped habitat in north-western Australia. J. R. Soc. West. Aust. 1999;82:89–98.

25. Smith MJ, Williams WD. The occurrence of Antecaridina lauensis (Edmondson) (Crustacea, Decapoda, Atyidae) in the Solomon Islands - An intriguing biogeographical problem. Hydrobiologia. 1981;85:49–58. doi: 10.1007/BF00011344.[Cross Ref]

26. Craft JD, et al. Islands under islands: The phylogeography and evolution of Halocaridina rubra Holthuis, 1963 (Crustacean: Decapoda: Atyidae) in the Hawaiian archipelago. Limnol. Oceanogr. 2008;53:675–689. doi: 10.4319/lo.2008.53.2.0675.[Cross Ref]

27. Weese DA, Fujita Y, Santos SR. Multiple colonizations lead to cryptic biodiversity in an island ecosystem: comparative phylogeography of anchialine shrimp species in the Ryukyu Archipelago, Japan. Biol. Bull. 2013;225:24–41. doi: 10.1086/BBLv225n1p24.[PubMed][Cross Ref]

28. Santos SR. Patterns of genetic connectivity among anchialine habitats: A case study of the endemic Hawaiian shrimp Halocaridina rubra on the island of Hawaii. Mol. Ecol. 2006;15:2699–2718. doi: 10.1111/j.1365-294X.2006.02965.x.[PubMed][Cross Ref]

29. Zakšek V, Sket B, Trontelj P. Phylogeny of the cave shrimp Troglocaris: Evidence of a young connection between Balkans and Caucasus. Mol. Phylogenet. Evol. 2007;42:223–235. doi: 10.1016/j.ympev.2006.07.009.[PubMed][Cross Ref]

30. Hunter RL, Webb MS, Iliffe TM, Bremer JRA. Phylogeny and historical Biogeography of the cave-adapted shrimp genus Typhlatya (Atyidae) in the Caribbean Sea and western Atlantic. J. Biogeogr. 2008;35:65–75.

31. Page TJ, Humphreys WF, Hughes JM. Shrimps down under: Evolutionary relationships of subterranean crustaceans from Western Australia (Decapoda: Atyidae: Stygiocaris) PLoS One. 2008;3:e1618. doi: 10.1371/journal.pone.0001618.[PMC free article][PubMed][Cross Ref]

32. von Rintelen K, et al. Drawn to the dark side: A molecular phylogeny of freshwater shrimps (Crustacea: Decapoda: Caridea: Atyidae) reveals frequent cave invasions and challenges current taxonomic hypotheses. Mol. Phylogenet. Evol. 2012;63:82–96. doi: 10.1016/j.ympev.2011.12.015.[PubMed][Cross Ref]

33. Holthuis LB. An enumeration of the Crustacea Decapoda Natantia inhabiting subterranean waters. Vie Milieu. 1956;7:43–76.

34. Sclater, J. G., Hellinger, S. & Tapscott, C. The paleobathymetry of the Atlantic Ocean from the Jurassic to the present. J. Geol. 509–552 (1977).

35. Jones EJW, Cande SC, Spathopoulos F. Evolution of a major oceanographic pathway: the equatorial atlantic. Geol. Soc. London, Spec. Publ. 1995;90:199–213. doi: 10.1144/GSL.SP.1995.090.01.12.[Cross Ref]

36. Reeves C. The position of Madagascar within Gondwana and its movements during Gondwana dispersal. J. African Earth Sci. 2014;94:45–57. doi: 10.1016/j.jafrearsci.2013.07.011.[Cross Ref]

37. Rögl, F. Palaeogeographic considerations for Mediterranean and Paratethys seaways (Oligocene to Miocene). Ann. des Naturhistorischen Museums Wien. Ser. A für Mineral. und Petrogr. Geol. und Paläontologie, Anthropol. und Prähistorie 279–310 (1997).

38. Xia X, Xie Z, Salemi M, Chen L, Wang Y. An index of substitution saturation and its application. Mol. Phylogenet. Evol. 2003;26:1–7. doi: 10.1016/S1055-7903(02)00326-3.[PubMed][Cross Ref]

39. Shen H, Braband A, Scholtz G. Mitogenomic analysis of decapod crustacean phylogeny corroborates traditional views on their relationships. Mol. Phylogenet. Evol. 2013;66:776–789. doi: 10.1016/j.ympev.2012.11.002.[PubMed][Cross Ref]

40. Lartillot N, Philippe H. A Bayesian Mixture Model for Across-Site Heterogeneities in the Amino-Acid Replacement Process. Mol. Biol. Evol. 2004;21:1095–1109. doi: 10.1093/molbev/msh112.[PubMed]

Insects comprise approximately 79% of all described animals, probably form an even greater percentage of the animal component of terrestrial biotas and are excellent subjects for biogeographic studies. This paper applies vicariance biogeography methods to samples of insects from Canada, the United States and Mexico. Analysis of the reduced area cladograms of 22 genera representing 11 families and 6 orders shows that North America (Canada and continental United States) and Mexico have ten zones of disjunction which separate allopatric sister taxa.

The predominant pattern among the cladograms is for the various pairs of sister areas to each have a different outgroup area. The general lack of compatibility among reduced area cladograms is apparently due to four factors. (1) Some groups of insects have probably dispersed across barriers. (2) Barriers within at least 6 of the zones of disjunction have been cyclic in occurrence, alternating between being present and then temporarily subsiding; these cycles have offered opportunities for cyclic dispersal and cyclic vicariance. (3) The geographical ranges of many insect groups have apparently changed greatly in the past, thereby obscuring any orderly vicariance patterns. (4) Extinctions probably have played a major role in producing incompatible reduced area cladograms. Selective pressures at times have probably favored the most vagile insect groups and thereby selected for those least likely to have compatible reduced area cladograms while selecting against more sedentary groups, those most likely to have compatible cladograms.

The methods of vicariance biogeography may be unable to fully elucidate the historical biogeography of many major components of continental biotas due to factors such as those affecting insects. Such methods may be most appropriate for relatively sedentary organisms found in areas outside the ranges of drastic environmental changes such as Pleistocene ice sheets. The methods of vicariance biogeography need to be further tested with data from real organisms rather than from simplified or hypothetical taxa; such testing may lead to the devising of more robust procedures. For many groups of organisms the methods of vicariance biogeography will be an important subset of a more multidisciplinary approach.

Leave a Comment

(0 Comments)

Your email address will not be published. Required fields are marked *